1634 lines
45 KiB
C++
1634 lines
45 KiB
C++
//========================================================================
|
|
//
|
|
// Decrypt.cc
|
|
//
|
|
// Copyright 1996-2003 Glyph & Cog, LLC
|
|
//
|
|
//========================================================================
|
|
|
|
#include <aconf.h>
|
|
|
|
#ifdef USE_GCC_PRAGMAS
|
|
#pragma implementation
|
|
#endif
|
|
|
|
#include <string.h>
|
|
#include "gmem.h"
|
|
#include "gmempp.h"
|
|
#include "Decrypt.h"
|
|
|
|
#ifdef USE_OPENSSL_HASH
|
|
#include "../../../Common/3dParty/openssl/openssl/crypto/sha/sha512.c"
|
|
#include "../../../Common/3dParty/openssl/openssl/crypto/mem_clr.c"
|
|
#else
|
|
#define SHA384 sha384
|
|
#define SHA512 sha512
|
|
#endif
|
|
|
|
static void aes256KeyExpansion(DecryptAES256State *s,
|
|
Guchar *objKey, int objKeyLen);
|
|
static void aes256DecryptBlock(DecryptAES256State *s, Guchar *in, GBool last);
|
|
static void sha256(Guchar *msg, int msgLen, Guchar *hash);
|
|
static void sha384(Guchar *msg, int msgLen, Guchar *hash);
|
|
static void sha512(Guchar *msg, int msgLen, Guchar *hash);
|
|
|
|
static Guchar passwordPad[32] = {
|
|
0x28, 0xbf, 0x4e, 0x5e, 0x4e, 0x75, 0x8a, 0x41,
|
|
0x64, 0x00, 0x4e, 0x56, 0xff, 0xfa, 0x01, 0x08,
|
|
0x2e, 0x2e, 0x00, 0xb6, 0xd0, 0x68, 0x3e, 0x80,
|
|
0x2f, 0x0c, 0xa9, 0xfe, 0x64, 0x53, 0x69, 0x7a
|
|
};
|
|
|
|
//------------------------------------------------------------------------
|
|
// Decrypt
|
|
//------------------------------------------------------------------------
|
|
|
|
GBool Decrypt::makeFileKey(int encVersion, int encRevision, int keyLength,
|
|
GString *ownerKey, GString *userKey,
|
|
GString *ownerEnc, GString *userEnc,
|
|
int permissions, GString *fileID,
|
|
GString *ownerPassword, GString *userPassword,
|
|
Guchar *fileKey, GBool encryptMetadata,
|
|
GBool *ownerPasswordOk) {
|
|
DecryptAES256State state;
|
|
Guchar test[127 + 56], test2[32];
|
|
GString *userPassword2;
|
|
const char *userPW;
|
|
Guchar fState[256];
|
|
Guchar tmpKey[16];
|
|
Guchar fx, fy;
|
|
int len, i, j;
|
|
|
|
*ownerPasswordOk = gFalse;
|
|
|
|
if (encRevision == 5 || encRevision == 6) {
|
|
|
|
// check the owner password
|
|
if (ownerPassword) {
|
|
//~ this is supposed to convert the password to UTF-8 using "SASLprep"
|
|
len = ownerPassword->getLength();
|
|
if (len > 127) {
|
|
len = 127;
|
|
}
|
|
memcpy(test, ownerPassword->getCString(), len);
|
|
memcpy(test + len, ownerKey->getCString() + 32, 8);
|
|
memcpy(test + len + 8, userKey->getCString(), 48);
|
|
sha256(test, len + 56, test);
|
|
if (encRevision == 6) {
|
|
r6Hash(test, 32, ownerPassword->getCString(), len,
|
|
userKey->getCString());
|
|
}
|
|
if (!memcmp(test, ownerKey->getCString(), 32)) {
|
|
|
|
// compute the file key from the owner password
|
|
memcpy(test, ownerPassword->getCString(), len);
|
|
memcpy(test + len, ownerKey->getCString() + 40, 8);
|
|
memcpy(test + len + 8, userKey->getCString(), 48);
|
|
sha256(test, len + 56, test);
|
|
if (encRevision == 6) {
|
|
r6Hash(test, 32, ownerPassword->getCString(), len,
|
|
userKey->getCString());
|
|
}
|
|
aes256KeyExpansion(&state, test, 32);
|
|
for (i = 0; i < 16; ++i) {
|
|
state.cbc[i] = 0;
|
|
}
|
|
aes256DecryptBlock(&state, (Guchar *)ownerEnc->getCString(), gFalse);
|
|
memcpy(fileKey, state.buf, 16);
|
|
aes256DecryptBlock(&state, (Guchar *)ownerEnc->getCString() + 16,
|
|
gFalse);
|
|
memcpy(fileKey + 16, state.buf, 16);
|
|
|
|
*ownerPasswordOk = gTrue;
|
|
return gTrue;
|
|
}
|
|
}
|
|
|
|
// check the user password
|
|
if (userPassword) {
|
|
//~ this is supposed to convert the password to UTF-8 using "SASLprep"
|
|
userPW = userPassword->getCString();
|
|
len = userPassword->getLength();
|
|
if (len > 127) {
|
|
len = 127;
|
|
}
|
|
} else {
|
|
userPW = "";
|
|
len = 0;
|
|
}
|
|
memcpy(test, userPW, len);
|
|
memcpy(test + len, userKey->getCString() + 32, 8);
|
|
sha256(test, len + 8, test);
|
|
if (encRevision == 6) {
|
|
r6Hash(test, 32, userPW, len, NULL);
|
|
}
|
|
if (!memcmp(test, userKey->getCString(), 32)) {
|
|
|
|
// compute the file key from the user password
|
|
memcpy(test, userPW, len);
|
|
memcpy(test + len, userKey->getCString() + 40, 8);
|
|
sha256(test, len + 8, test);
|
|
if (encRevision == 6) {
|
|
r6Hash(test, 32, userPW, len, NULL);
|
|
}
|
|
aes256KeyExpansion(&state, test, 32);
|
|
for (i = 0; i < 16; ++i) {
|
|
state.cbc[i] = 0;
|
|
}
|
|
aes256DecryptBlock(&state, (Guchar *)userEnc->getCString(), gFalse);
|
|
memcpy(fileKey, state.buf, 16);
|
|
aes256DecryptBlock(&state, (Guchar *)userEnc->getCString() + 16,
|
|
gFalse);
|
|
memcpy(fileKey + 16, state.buf, 16);
|
|
|
|
return gTrue;
|
|
}
|
|
|
|
return gFalse;
|
|
|
|
} else if (ownerPassword->getLength() == 0) {
|
|
// try using the supplied user password
|
|
return makeFileKey2(encVersion, encRevision, keyLength, ownerKey, userKey,
|
|
permissions, fileID, userPassword, fileKey,
|
|
encryptMetadata);
|
|
} else {
|
|
|
|
// try using the supplied owner password to generate the user password
|
|
if (ownerPassword) {
|
|
len = ownerPassword->getLength();
|
|
if (len < 32) {
|
|
memcpy(test, ownerPassword->getCString(), len);
|
|
memcpy(test + len, passwordPad, 32 - len);
|
|
} else {
|
|
memcpy(test, ownerPassword->getCString(), 32);
|
|
}
|
|
md5(test, 32, test);
|
|
if (encRevision == 3) {
|
|
for (i = 0; i < 50; ++i) {
|
|
md5(test, keyLength, test);
|
|
}
|
|
}
|
|
if (encRevision == 2) {
|
|
rc4InitKey(test, keyLength, fState);
|
|
fx = fy = 0;
|
|
for (i = 0; i < 32; ++i) {
|
|
test2[i] = rc4DecryptByte(fState, &fx, &fy, ownerKey->getChar(i));
|
|
}
|
|
} else {
|
|
memcpy(test2, ownerKey->getCString(), 32);
|
|
for (i = 19; i >= 0; --i) {
|
|
for (j = 0; j < keyLength; ++j) {
|
|
tmpKey[j] = (Guchar)(test[j] ^ i);
|
|
}
|
|
rc4InitKey(tmpKey, keyLength, fState);
|
|
fx = fy = 0;
|
|
for (j = 0; j < 32; ++j) {
|
|
test2[j] = rc4DecryptByte(fState, &fx, &fy, test2[j]);
|
|
}
|
|
}
|
|
}
|
|
userPassword2 = new GString((char *)test2, 32);
|
|
if (makeFileKey2(encVersion, encRevision, keyLength, ownerKey, userKey,
|
|
permissions, fileID, userPassword2, fileKey,
|
|
encryptMetadata)) {
|
|
*ownerPasswordOk = gTrue;
|
|
delete userPassword2;
|
|
return gTrue;
|
|
}
|
|
delete userPassword2;
|
|
}
|
|
|
|
// try using the supplied user password
|
|
return makeFileKey2(encVersion, encRevision, keyLength, ownerKey, userKey,
|
|
permissions, fileID, userPassword, fileKey,
|
|
encryptMetadata);
|
|
}
|
|
}
|
|
|
|
void Decrypt::r6Hash(Guchar *key, int keyLen, const char *pwd, int pwdLen,
|
|
char *userKey) {
|
|
Guchar key1[64*(127+64+48)];
|
|
DecryptAESState state128;
|
|
int n, i, j, k;
|
|
|
|
i = 0;
|
|
while (1) {
|
|
memcpy(key1, pwd, pwdLen);
|
|
memcpy(key1 + pwdLen, key, keyLen);
|
|
n = pwdLen + keyLen;
|
|
if (userKey) {
|
|
memcpy(key1 + pwdLen + keyLen, userKey, 48);
|
|
n += 48;
|
|
}
|
|
for (j = 1; j < 64; ++j) {
|
|
memcpy(key1 + j * n, key1, n);
|
|
}
|
|
n *= 64;
|
|
aesKeyExpansion(&state128, key, 16, gFalse);
|
|
for (j = 0; j < 16; ++j) {
|
|
state128.cbc[j] = key[16+j];
|
|
}
|
|
for (j = 0; j < n; j += 16) {
|
|
aesEncryptBlock(&state128, key1 + j);
|
|
memcpy(key1 + j, state128.buf, 16);
|
|
}
|
|
k = 0;
|
|
for (j = 0; j < 16; ++j) {
|
|
k += key1[j] % 3;
|
|
}
|
|
k %= 3;
|
|
switch (k) {
|
|
case 0:
|
|
sha256(key1, n, key);
|
|
keyLen = 32;
|
|
break;
|
|
case 1:
|
|
SHA384(key1, n, key);
|
|
keyLen = 48;
|
|
break;
|
|
case 2:
|
|
SHA512(key1, n, key);
|
|
keyLen = 64;
|
|
break;
|
|
}
|
|
// from the spec, it appears that i should be incremented after
|
|
// the test, but that doesn't match what Adobe does
|
|
++i;
|
|
if (i >= 64 && key1[n - 1] <= i - 32) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
GBool Decrypt::makeFileKey2(int encVersion, int encRevision, int keyLength,
|
|
GString *ownerKey, GString *userKey,
|
|
int permissions, GString *fileID,
|
|
GString *userPassword, Guchar *fileKey,
|
|
GBool encryptMetadata) {
|
|
Guchar *buf;
|
|
Guchar test[32];
|
|
Guchar fState[256];
|
|
Guchar tmpKey[16];
|
|
Guchar fx, fy;
|
|
int len, i, j;
|
|
GBool ok;
|
|
|
|
// generate file key
|
|
buf = (Guchar *)gmalloc(72 + fileID->getLength());
|
|
if (userPassword) {
|
|
len = userPassword->getLength();
|
|
if (len < 32) {
|
|
memcpy(buf, userPassword->getCString(), len);
|
|
memcpy(buf + len, passwordPad, 32 - len);
|
|
} else {
|
|
memcpy(buf, userPassword->getCString(), 32);
|
|
}
|
|
} else {
|
|
memcpy(buf, passwordPad, 32);
|
|
}
|
|
memcpy(buf + 32, ownerKey->getCString(), 32);
|
|
buf[64] = (Guchar)(permissions & 0xff);
|
|
buf[65] = (Guchar)((permissions >> 8) & 0xff);
|
|
buf[66] = (Guchar)((permissions >> 16) & 0xff);
|
|
buf[67] = (Guchar)((permissions >> 24) & 0xff);
|
|
memcpy(buf + 68, fileID->getCString(), fileID->getLength());
|
|
len = 68 + fileID->getLength();
|
|
if (!encryptMetadata) {
|
|
buf[len++] = 0xff;
|
|
buf[len++] = 0xff;
|
|
buf[len++] = 0xff;
|
|
buf[len++] = 0xff;
|
|
}
|
|
md5(buf, len, fileKey);
|
|
if (encRevision == 3) {
|
|
for (i = 0; i < 50; ++i) {
|
|
md5(fileKey, keyLength, fileKey);
|
|
}
|
|
}
|
|
|
|
// test user password
|
|
if (encRevision == 2) {
|
|
rc4InitKey(fileKey, keyLength, fState);
|
|
fx = fy = 0;
|
|
for (i = 0; i < 32; ++i) {
|
|
test[i] = rc4DecryptByte(fState, &fx, &fy, userKey->getChar(i));
|
|
}
|
|
ok = memcmp(test, passwordPad, 32) == 0;
|
|
} else if (encRevision == 3) {
|
|
memcpy(test, userKey->getCString(), 32);
|
|
for (i = 19; i >= 0; --i) {
|
|
for (j = 0; j < keyLength; ++j) {
|
|
tmpKey[j] = (Guchar)(fileKey[j] ^ i);
|
|
}
|
|
rc4InitKey(tmpKey, keyLength, fState);
|
|
fx = fy = 0;
|
|
for (j = 0; j < 32; ++j) {
|
|
test[j] = rc4DecryptByte(fState, &fx, &fy, test[j]);
|
|
}
|
|
}
|
|
memcpy(buf, passwordPad, 32);
|
|
memcpy(buf + 32, fileID->getCString(), fileID->getLength());
|
|
md5(buf, 32 + fileID->getLength(), buf);
|
|
ok = memcmp(test, buf, 16) == 0;
|
|
} else {
|
|
ok = gFalse;
|
|
}
|
|
|
|
gfree(buf);
|
|
return ok;
|
|
}
|
|
|
|
//------------------------------------------------------------------------
|
|
// DecryptStream
|
|
//------------------------------------------------------------------------
|
|
|
|
DecryptStream::DecryptStream(Stream *strA, Guchar *fileKeyA,
|
|
CryptAlgorithm algoA, int keyLengthA,
|
|
int objNumA, int objGenA):
|
|
FilterStream(strA)
|
|
{
|
|
int i;
|
|
|
|
memcpy(fileKey, fileKeyA, keyLengthA);
|
|
algo = algoA;
|
|
keyLength = keyLengthA;
|
|
objNum = objNumA;
|
|
objGen = objGenA;
|
|
|
|
// construct object key
|
|
for (i = 0; i < keyLength; ++i) {
|
|
objKey[i] = fileKey[i];
|
|
}
|
|
switch (algo) {
|
|
case cryptRC4:
|
|
objKey[keyLength] = (Guchar)(objNum & 0xff);
|
|
objKey[keyLength + 1] = (Guchar)((objNum >> 8) & 0xff);
|
|
objKey[keyLength + 2] = (Guchar)((objNum >> 16) & 0xff);
|
|
objKey[keyLength + 3] = (Guchar)(objGen & 0xff);
|
|
objKey[keyLength + 4] = (Guchar)((objGen >> 8) & 0xff);
|
|
md5(objKey, keyLength + 5, objKey);
|
|
if ((objKeyLength = keyLength + 5) > 16) {
|
|
objKeyLength = 16;
|
|
}
|
|
break;
|
|
case cryptAES:
|
|
objKey[keyLength] = (Guchar)(objNum & 0xff);
|
|
objKey[keyLength + 1] = (Guchar)((objNum >> 8) & 0xff);
|
|
objKey[keyLength + 2] = (Guchar)((objNum >> 16) & 0xff);
|
|
objKey[keyLength + 3] = (Guchar)(objGen & 0xff);
|
|
objKey[keyLength + 4] = (Guchar)((objGen >> 8) & 0xff);
|
|
objKey[keyLength + 5] = 0x73; // 's'
|
|
objKey[keyLength + 6] = 0x41; // 'A'
|
|
objKey[keyLength + 7] = 0x6c; // 'l'
|
|
objKey[keyLength + 8] = 0x54; // 'T'
|
|
md5(objKey, keyLength + 9, objKey);
|
|
if ((objKeyLength = keyLength + 5) > 16) {
|
|
objKeyLength = 16;
|
|
}
|
|
break;
|
|
case cryptAES256:
|
|
objKeyLength = keyLength;
|
|
break;
|
|
}
|
|
}
|
|
|
|
DecryptStream::~DecryptStream() {
|
|
delete str;
|
|
}
|
|
|
|
Stream *DecryptStream::copy() {
|
|
return new DecryptStream(str->copy(), fileKey, algo, keyLength,
|
|
objNum, objGen);
|
|
}
|
|
|
|
void DecryptStream::reset() {
|
|
str->reset();
|
|
switch (algo) {
|
|
case cryptRC4:
|
|
state.rc4.x = state.rc4.y = 0;
|
|
rc4InitKey(objKey, objKeyLength, state.rc4.state);
|
|
state.rc4.buf = EOF;
|
|
break;
|
|
case cryptAES:
|
|
aesKeyExpansion(&state.aes, objKey, objKeyLength, gTrue);
|
|
str->getBlock((char *)state.aes.cbc, 16);
|
|
state.aes.bufIdx = 16;
|
|
break;
|
|
case cryptAES256:
|
|
aes256KeyExpansion(&state.aes256, objKey, objKeyLength);
|
|
str->getBlock((char *)state.aes256.cbc, 16);
|
|
state.aes256.bufIdx = 16;
|
|
break;
|
|
}
|
|
}
|
|
|
|
int DecryptStream::getChar() {
|
|
Guchar in[16];
|
|
int c;
|
|
|
|
c = EOF; // make gcc happy
|
|
switch (algo) {
|
|
case cryptRC4:
|
|
if (state.rc4.buf == EOF) {
|
|
c = str->getChar();
|
|
if (c != EOF) {
|
|
state.rc4.buf = rc4DecryptByte(state.rc4.state, &state.rc4.x,
|
|
&state.rc4.y, (Guchar)c);
|
|
}
|
|
}
|
|
c = state.rc4.buf;
|
|
state.rc4.buf = EOF;
|
|
break;
|
|
case cryptAES:
|
|
if (state.aes.bufIdx == 16) {
|
|
if (str->getBlock((char *)in, 16) != 16) {
|
|
return EOF;
|
|
}
|
|
aesDecryptBlock(&state.aes, in, str->lookChar() == EOF);
|
|
}
|
|
if (state.aes.bufIdx == 16) {
|
|
c = EOF;
|
|
} else {
|
|
c = state.aes.buf[state.aes.bufIdx++];
|
|
}
|
|
break;
|
|
case cryptAES256:
|
|
if (state.aes256.bufIdx == 16) {
|
|
if (str->getBlock((char *)in, 16) != 16) {
|
|
return EOF;
|
|
}
|
|
aes256DecryptBlock(&state.aes256, in, str->lookChar() == EOF);
|
|
}
|
|
if (state.aes256.bufIdx == 16) {
|
|
c = EOF;
|
|
} else {
|
|
c = state.aes256.buf[state.aes256.bufIdx++];
|
|
}
|
|
break;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
int DecryptStream::lookChar() {
|
|
Guchar in[16];
|
|
int c;
|
|
|
|
c = EOF; // make gcc happy
|
|
switch (algo) {
|
|
case cryptRC4:
|
|
if (state.rc4.buf == EOF) {
|
|
c = str->getChar();
|
|
if (c != EOF) {
|
|
state.rc4.buf = rc4DecryptByte(state.rc4.state, &state.rc4.x,
|
|
&state.rc4.y, (Guchar)c);
|
|
}
|
|
}
|
|
c = state.rc4.buf;
|
|
break;
|
|
case cryptAES:
|
|
if (state.aes.bufIdx == 16) {
|
|
if (str->getBlock((char *)in, 16) != 16) {
|
|
return EOF;
|
|
}
|
|
aesDecryptBlock(&state.aes, in, str->lookChar() == EOF);
|
|
}
|
|
if (state.aes.bufIdx == 16) {
|
|
c = EOF;
|
|
} else {
|
|
c = state.aes.buf[state.aes.bufIdx];
|
|
}
|
|
break;
|
|
case cryptAES256:
|
|
if (state.aes256.bufIdx == 16) {
|
|
if (str->getBlock((char *)in, 16) != 16) {
|
|
return EOF;
|
|
}
|
|
aes256DecryptBlock(&state.aes256, in, str->lookChar() == EOF);
|
|
}
|
|
if (state.aes256.bufIdx == 16) {
|
|
c = EOF;
|
|
} else {
|
|
c = state.aes256.buf[state.aes256.bufIdx];
|
|
}
|
|
break;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
GBool DecryptStream::isBinary(GBool last) {
|
|
return str->isBinary(last);
|
|
}
|
|
|
|
//------------------------------------------------------------------------
|
|
// RC4-compatible decryption
|
|
//------------------------------------------------------------------------
|
|
|
|
void rc4InitKey(Guchar *key, int keyLen, Guchar *state) {
|
|
Guchar index1, index2;
|
|
Guchar t;
|
|
int i;
|
|
|
|
for (i = 0; i < 256; ++i)
|
|
state[i] = (Guchar)i;
|
|
index1 = index2 = 0;
|
|
for (i = 0; i < 256; ++i) {
|
|
index2 = (Guchar)(key[index1] + state[i] + index2);
|
|
t = state[i];
|
|
state[i] = state[index2];
|
|
state[index2] = t;
|
|
index1 = (Guchar)((index1 + 1) % keyLen);
|
|
}
|
|
}
|
|
|
|
Guchar rc4DecryptByte(Guchar *state, Guchar *x, Guchar *y, Guchar c) {
|
|
Guchar x1, y1, tx, ty;
|
|
|
|
x1 = *x = (Guchar)(*x + 1);
|
|
y1 = *y = (Guchar)(state[*x] + *y);
|
|
tx = state[x1];
|
|
ty = state[y1];
|
|
state[x1] = ty;
|
|
state[y1] = tx;
|
|
return c ^ state[(tx + ty) % 256];
|
|
}
|
|
|
|
//------------------------------------------------------------------------
|
|
// AES decryption
|
|
//------------------------------------------------------------------------
|
|
|
|
static Guchar sbox[256] = {
|
|
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
|
|
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
|
|
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
|
|
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
|
|
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
|
|
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
|
|
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
|
|
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
|
|
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
|
|
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
|
|
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
|
|
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
|
|
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
|
|
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
|
|
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
|
|
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
|
|
};
|
|
|
|
static Guchar invSbox[256] = {
|
|
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
|
|
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
|
|
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
|
|
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
|
|
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
|
|
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
|
|
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
|
|
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
|
|
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
|
|
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
|
|
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
|
|
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
|
|
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
|
|
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
|
|
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
|
|
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
|
|
};
|
|
|
|
static Guint rcon[11] = {
|
|
0x00000000, // unused
|
|
0x01000000,
|
|
0x02000000,
|
|
0x04000000,
|
|
0x08000000,
|
|
0x10000000,
|
|
0x20000000,
|
|
0x40000000,
|
|
0x80000000,
|
|
0x1b000000,
|
|
0x36000000
|
|
};
|
|
|
|
static inline Guint subWord(Guint x) {
|
|
return (sbox[x >> 24] << 24)
|
|
| (sbox[(x >> 16) & 0xff] << 16)
|
|
| (sbox[(x >> 8) & 0xff] << 8)
|
|
| sbox[x & 0xff];
|
|
}
|
|
|
|
static inline Guint rotWord(Guint x) {
|
|
return ((x << 8) & 0xffffffff) | (x >> 24);
|
|
}
|
|
|
|
static inline void subBytes(Guchar *state) {
|
|
int i;
|
|
|
|
for (i = 0; i < 16; ++i) {
|
|
state[i] = sbox[state[i]];
|
|
}
|
|
}
|
|
|
|
static inline void invSubBytes(Guchar *state) {
|
|
int i;
|
|
|
|
for (i = 0; i < 16; ++i) {
|
|
state[i] = invSbox[state[i]];
|
|
}
|
|
}
|
|
|
|
static inline void shiftRows(Guchar *state) {
|
|
Guchar t;
|
|
|
|
t = state[4];
|
|
state[4] = state[5];
|
|
state[5] = state[6];
|
|
state[6] = state[7];
|
|
state[7] = t;
|
|
|
|
t = state[8];
|
|
state[8] = state[10];
|
|
state[10] = t;
|
|
t = state[9];
|
|
state[9] = state[11];
|
|
state[11] = t;
|
|
|
|
t = state[15];
|
|
state[15] = state[14];
|
|
state[14] = state[13];
|
|
state[13] = state[12];
|
|
state[12] = t;
|
|
}
|
|
|
|
static inline void invShiftRows(Guchar *state) {
|
|
Guchar t;
|
|
|
|
t = state[7];
|
|
state[7] = state[6];
|
|
state[6] = state[5];
|
|
state[5] = state[4];
|
|
state[4] = t;
|
|
|
|
t = state[8];
|
|
state[8] = state[10];
|
|
state[10] = t;
|
|
t = state[9];
|
|
state[9] = state[11];
|
|
state[11] = t;
|
|
|
|
t = state[12];
|
|
state[12] = state[13];
|
|
state[13] = state[14];
|
|
state[14] = state[15];
|
|
state[15] = t;
|
|
}
|
|
|
|
// {02} \cdot s
|
|
static inline Guchar mul02(Guchar s) {
|
|
Guchar s2;
|
|
|
|
s2 = (Guchar)((s & 0x80) ? ((s << 1) ^ 0x1b) : (s << 1));
|
|
return s2;
|
|
}
|
|
|
|
// {03} \cdot s
|
|
static inline Guchar mul03(Guchar s) {
|
|
Guchar s2;
|
|
|
|
s2 = (Guchar)((s & 0x80) ? ((s << 1) ^ 0x1b) : (s << 1));
|
|
return s ^ s2;
|
|
}
|
|
|
|
// {09} \cdot s
|
|
static inline Guchar mul09(Guchar s) {
|
|
Guchar s2, s4, s8;
|
|
|
|
s2 = (Guchar)((s & 0x80) ? ((s << 1) ^ 0x1b) : (s << 1));
|
|
s4 = (Guchar)((s2 & 0x80) ? ((s2 << 1) ^ 0x1b) : (s2 << 1));
|
|
s8 = (Guchar)((s4 & 0x80) ? ((s4 << 1) ^ 0x1b) : (s4 << 1));
|
|
return s ^ s8;
|
|
}
|
|
|
|
// {0b} \cdot s
|
|
static inline Guchar mul0b(Guchar s) {
|
|
Guchar s2, s4, s8;
|
|
|
|
s2 = (Guchar)((s & 0x80) ? ((s << 1) ^ 0x1b) : (s << 1));
|
|
s4 = (Guchar)((s2 & 0x80) ? ((s2 << 1) ^ 0x1b) : (s2 << 1));
|
|
s8 = (Guchar)((s4 & 0x80) ? ((s4 << 1) ^ 0x1b) : (s4 << 1));
|
|
return s ^ s2 ^ s8;
|
|
}
|
|
|
|
// {0d} \cdot s
|
|
static inline Guchar mul0d(Guchar s) {
|
|
Guchar s2, s4, s8;
|
|
|
|
s2 = (Guchar)((s & 0x80) ? ((s << 1) ^ 0x1b) : (s << 1));
|
|
s4 = (Guchar)((s2 & 0x80) ? ((s2 << 1) ^ 0x1b) : (s2 << 1));
|
|
s8 = (Guchar)((s4 & 0x80) ? ((s4 << 1) ^ 0x1b) : (s4 << 1));
|
|
return s ^ s4 ^ s8;
|
|
}
|
|
|
|
// {0e} \cdot s
|
|
static inline Guchar mul0e(Guchar s) {
|
|
Guchar s2, s4, s8;
|
|
|
|
s2 = (Guchar)((s & 0x80) ? ((s << 1) ^ 0x1b) : (s << 1));
|
|
s4 = (Guchar)((s2 & 0x80) ? ((s2 << 1) ^ 0x1b) : (s2 << 1));
|
|
s8 = (Guchar)((s4 & 0x80) ? ((s4 << 1) ^ 0x1b) : (s4 << 1));
|
|
return s2 ^ s4 ^ s8;
|
|
}
|
|
|
|
static inline void mixColumns(Guchar *state) {
|
|
int c;
|
|
Guchar s0, s1, s2, s3;
|
|
|
|
for (c = 0; c < 4; ++c) {
|
|
s0 = state[c];
|
|
s1 = state[4+c];
|
|
s2 = state[8+c];
|
|
s3 = state[12+c];
|
|
state[c] = mul02(s0) ^ mul03(s1) ^ s2 ^ s3;
|
|
state[4+c] = s0 ^ mul02(s1) ^ mul03(s2) ^ s3;
|
|
state[8+c] = s0 ^ s1 ^ mul02(s2) ^ mul03(s3);
|
|
state[12+c] = mul03(s0) ^ s1 ^ s2 ^ mul02(s3);
|
|
}
|
|
}
|
|
|
|
static inline void invMixColumns(Guchar *state) {
|
|
int c;
|
|
Guchar s0, s1, s2, s3;
|
|
|
|
for (c = 0; c < 4; ++c) {
|
|
s0 = state[c];
|
|
s1 = state[4+c];
|
|
s2 = state[8+c];
|
|
s3 = state[12+c];
|
|
state[c] = mul0e(s0) ^ mul0b(s1) ^ mul0d(s2) ^ mul09(s3);
|
|
state[4+c] = mul09(s0) ^ mul0e(s1) ^ mul0b(s2) ^ mul0d(s3);
|
|
state[8+c] = mul0d(s0) ^ mul09(s1) ^ mul0e(s2) ^ mul0b(s3);
|
|
state[12+c] = mul0b(s0) ^ mul0d(s1) ^ mul09(s2) ^ mul0e(s3);
|
|
}
|
|
}
|
|
|
|
static inline void invMixColumnsW(Guint *w) {
|
|
int c;
|
|
Guchar s0, s1, s2, s3;
|
|
|
|
for (c = 0; c < 4; ++c) {
|
|
s0 = (Guchar)(w[c] >> 24);
|
|
s1 = (Guchar)(w[c] >> 16);
|
|
s2 = (Guchar)(w[c] >> 8);
|
|
s3 = (Guchar)w[c];
|
|
w[c] = ((mul0e(s0) ^ mul0b(s1) ^ mul0d(s2) ^ mul09(s3)) << 24)
|
|
| ((mul09(s0) ^ mul0e(s1) ^ mul0b(s2) ^ mul0d(s3)) << 16)
|
|
| ((mul0d(s0) ^ mul09(s1) ^ mul0e(s2) ^ mul0b(s3)) << 8)
|
|
| (mul0b(s0) ^ mul0d(s1) ^ mul09(s2) ^ mul0e(s3));
|
|
}
|
|
}
|
|
|
|
static inline void addRoundKey(Guchar *state, Guint *w) {
|
|
int c;
|
|
|
|
for (c = 0; c < 4; ++c) {
|
|
state[c] ^= (Guchar)(w[c] >> 24);
|
|
state[4+c] ^= (Guchar)(w[c] >> 16);
|
|
state[8+c] ^= (Guchar)(w[c] >> 8);
|
|
state[12+c] ^= (Guchar)w[c];
|
|
}
|
|
}
|
|
|
|
void aesKeyExpansion(DecryptAESState *s,
|
|
Guchar *objKey, int objKeyLen,
|
|
GBool decrypt) {
|
|
Guint temp;
|
|
int i, round;
|
|
|
|
//~ this assumes objKeyLen == 16
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
s->w[i] = (objKey[4*i] << 24) + (objKey[4*i+1] << 16) +
|
|
(objKey[4*i+2] << 8) + objKey[4*i+3];
|
|
}
|
|
for (i = 4; i < 44; ++i) {
|
|
temp = s->w[i-1];
|
|
if (!(i & 3)) {
|
|
temp = subWord(rotWord(temp)) ^ rcon[i/4];
|
|
}
|
|
s->w[i] = s->w[i-4] ^ temp;
|
|
}
|
|
if (decrypt) {
|
|
for (round = 1; round <= 9; ++round) {
|
|
invMixColumnsW(&s->w[round * 4]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void aesEncryptBlock(DecryptAESState *s, Guchar *in) {
|
|
int c, round;
|
|
|
|
// initial state + CBC
|
|
for (c = 0; c < 4; ++c) {
|
|
s->state[c] = in[4*c] ^ s->cbc[4*c];
|
|
s->state[4+c] = in[4*c+1] ^ s->cbc[4*c+1];
|
|
s->state[8+c] = in[4*c+2] ^ s->cbc[4*c+2];
|
|
s->state[12+c] = in[4*c+3] ^ s->cbc[4*c+3];
|
|
}
|
|
|
|
// round 0
|
|
addRoundKey(s->state, &s->w[0]);
|
|
|
|
// rounds 1 .. 9
|
|
for (round = 1; round <= 9; ++round) {
|
|
subBytes(s->state);
|
|
shiftRows(s->state);
|
|
mixColumns(s->state);
|
|
addRoundKey(s->state, &s->w[round * 4]);
|
|
}
|
|
|
|
// round 10
|
|
subBytes(s->state);
|
|
shiftRows(s->state);
|
|
addRoundKey(s->state, &s->w[10 * 4]);
|
|
|
|
// output + save for next CBC
|
|
for (c = 0; c < 4; ++c) {
|
|
s->buf[4*c] = s->cbc[4*c] = s->state[c];
|
|
s->buf[4*c+1] = s->cbc[4*c+1] = s->state[4+c];
|
|
s->buf[4*c+2] = s->cbc[4*c+2] = s->state[8+c];
|
|
s->buf[4*c+3] = s->cbc[4*c+3] = s->state[12+c];
|
|
}
|
|
}
|
|
|
|
void aesDecryptBlock(DecryptAESState *s, Guchar *in, GBool last) {
|
|
int c, round, n, i;
|
|
|
|
// initial state
|
|
for (c = 0; c < 4; ++c) {
|
|
s->state[c] = in[4*c];
|
|
s->state[4+c] = in[4*c+1];
|
|
s->state[8+c] = in[4*c+2];
|
|
s->state[12+c] = in[4*c+3];
|
|
}
|
|
|
|
// round 0
|
|
addRoundKey(s->state, &s->w[10 * 4]);
|
|
|
|
// rounds 1-9
|
|
for (round = 9; round >= 1; --round) {
|
|
invSubBytes(s->state);
|
|
invShiftRows(s->state);
|
|
invMixColumns(s->state);
|
|
addRoundKey(s->state, &s->w[round * 4]);
|
|
}
|
|
|
|
// round 10
|
|
invSubBytes(s->state);
|
|
invShiftRows(s->state);
|
|
addRoundKey(s->state, &s->w[0]);
|
|
|
|
// CBC
|
|
for (c = 0; c < 4; ++c) {
|
|
s->buf[4*c] = s->state[c] ^ s->cbc[4*c];
|
|
s->buf[4*c+1] = s->state[4+c] ^ s->cbc[4*c+1];
|
|
s->buf[4*c+2] = s->state[8+c] ^ s->cbc[4*c+2];
|
|
s->buf[4*c+3] = s->state[12+c] ^ s->cbc[4*c+3];
|
|
}
|
|
|
|
// save the input block for the next CBC
|
|
for (i = 0; i < 16; ++i) {
|
|
s->cbc[i] = in[i];
|
|
}
|
|
|
|
// remove padding
|
|
s->bufIdx = 0;
|
|
if (last) {
|
|
n = s->buf[15];
|
|
if (n < 1 || n > 16) { // this should never happen
|
|
n = 16;
|
|
}
|
|
for (i = 15; i >= n; --i) {
|
|
s->buf[i] = s->buf[i-n];
|
|
}
|
|
s->bufIdx = n;
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------
|
|
// AES-256 decryption
|
|
//------------------------------------------------------------------------
|
|
|
|
static void aes256KeyExpansion(DecryptAES256State *s,
|
|
Guchar *objKey, int objKeyLen) {
|
|
Guint temp;
|
|
int i, round;
|
|
|
|
//~ this assumes objKeyLen == 32
|
|
|
|
for (i = 0; i < 8; ++i) {
|
|
s->w[i] = (objKey[4*i] << 24) + (objKey[4*i+1] << 16) +
|
|
(objKey[4*i+2] << 8) + objKey[4*i+3];
|
|
}
|
|
for (i = 8; i < 60; ++i) {
|
|
temp = s->w[i-1];
|
|
if ((i & 7) == 0) {
|
|
temp = subWord(rotWord(temp)) ^ rcon[i/8];
|
|
} else if ((i & 7) == 4) {
|
|
temp = subWord(temp);
|
|
}
|
|
s->w[i] = s->w[i-8] ^ temp;
|
|
}
|
|
for (round = 1; round <= 13; ++round) {
|
|
invMixColumnsW(&s->w[round * 4]);
|
|
}
|
|
}
|
|
|
|
static void aes256DecryptBlock(DecryptAES256State *s, Guchar *in, GBool last) {
|
|
int c, round, n, i;
|
|
|
|
// initial state
|
|
for (c = 0; c < 4; ++c) {
|
|
s->state[c] = in[4*c];
|
|
s->state[4+c] = in[4*c+1];
|
|
s->state[8+c] = in[4*c+2];
|
|
s->state[12+c] = in[4*c+3];
|
|
}
|
|
|
|
// round 0
|
|
addRoundKey(s->state, &s->w[14 * 4]);
|
|
|
|
// rounds 13-1
|
|
for (round = 13; round >= 1; --round) {
|
|
invSubBytes(s->state);
|
|
invShiftRows(s->state);
|
|
invMixColumns(s->state);
|
|
addRoundKey(s->state, &s->w[round * 4]);
|
|
}
|
|
|
|
// round 14
|
|
invSubBytes(s->state);
|
|
invShiftRows(s->state);
|
|
addRoundKey(s->state, &s->w[0]);
|
|
|
|
// CBC
|
|
for (c = 0; c < 4; ++c) {
|
|
s->buf[4*c] = s->state[c] ^ s->cbc[4*c];
|
|
s->buf[4*c+1] = s->state[4+c] ^ s->cbc[4*c+1];
|
|
s->buf[4*c+2] = s->state[8+c] ^ s->cbc[4*c+2];
|
|
s->buf[4*c+3] = s->state[12+c] ^ s->cbc[4*c+3];
|
|
}
|
|
|
|
// save the input block for the next CBC
|
|
for (i = 0; i < 16; ++i) {
|
|
s->cbc[i] = in[i];
|
|
}
|
|
|
|
// remove padding
|
|
s->bufIdx = 0;
|
|
if (last) {
|
|
n = s->buf[15];
|
|
if (n < 1 || n > 16) { // this should never happen
|
|
n = 16;
|
|
}
|
|
for (i = 15; i >= n; --i) {
|
|
s->buf[i] = s->buf[i-n];
|
|
}
|
|
s->bufIdx = n;
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------
|
|
// MD5 message digest
|
|
//------------------------------------------------------------------------
|
|
|
|
// this works around a bug in older Sun compilers
|
|
static inline Gulong rotateLeft(Gulong x, int r) {
|
|
x &= 0xffffffff;
|
|
return ((x << r) | (x >> (32 - r))) & 0xffffffff;
|
|
}
|
|
|
|
static inline Gulong md5Round1(Gulong a, Gulong b, Gulong c, Gulong d,
|
|
Gulong Xk, int s, Gulong Ti) {
|
|
return b + rotateLeft((a + ((b & c) | (~b & d)) + Xk + Ti), s);
|
|
}
|
|
|
|
static inline Gulong md5Round2(Gulong a, Gulong b, Gulong c, Gulong d,
|
|
Gulong Xk, int s, Gulong Ti) {
|
|
return b + rotateLeft((a + ((b & d) | (c & ~d)) + Xk + Ti), s);
|
|
}
|
|
|
|
static inline Gulong md5Round3(Gulong a, Gulong b, Gulong c, Gulong d,
|
|
Gulong Xk, int s, Gulong Ti) {
|
|
return b + rotateLeft((a + (b ^ c ^ d) + Xk + Ti), s);
|
|
}
|
|
|
|
static inline Gulong md5Round4(Gulong a, Gulong b, Gulong c, Gulong d,
|
|
Gulong Xk, int s, Gulong Ti) {
|
|
return b + rotateLeft((a + (c ^ (b | ~d)) + Xk + Ti), s);
|
|
}
|
|
|
|
void md5Start(MD5State *state) {
|
|
state->a = 0x67452301;
|
|
state->b = 0xefcdab89;
|
|
state->c = 0x98badcfe;
|
|
state->d = 0x10325476;
|
|
state->bufLen = 0;
|
|
state->msgLen = 0;
|
|
}
|
|
|
|
static void md5ProcessBlock(MD5State *state) {
|
|
Gulong x[16];
|
|
Gulong a, b, c, d;
|
|
int i;
|
|
|
|
for (i = 0; i < 16; ++i) {
|
|
x[i] = state->buf[4*i] | (state->buf[4*i+1] << 8) |
|
|
(state->buf[4*i+2] << 16) | (state->buf[4*i+3] << 24);
|
|
}
|
|
|
|
a = state->a;
|
|
b = state->b;
|
|
c = state->c;
|
|
d = state->d;
|
|
|
|
// round 1
|
|
a = md5Round1(a, b, c, d, x[0], 7, 0xd76aa478);
|
|
d = md5Round1(d, a, b, c, x[1], 12, 0xe8c7b756);
|
|
c = md5Round1(c, d, a, b, x[2], 17, 0x242070db);
|
|
b = md5Round1(b, c, d, a, x[3], 22, 0xc1bdceee);
|
|
a = md5Round1(a, b, c, d, x[4], 7, 0xf57c0faf);
|
|
d = md5Round1(d, a, b, c, x[5], 12, 0x4787c62a);
|
|
c = md5Round1(c, d, a, b, x[6], 17, 0xa8304613);
|
|
b = md5Round1(b, c, d, a, x[7], 22, 0xfd469501);
|
|
a = md5Round1(a, b, c, d, x[8], 7, 0x698098d8);
|
|
d = md5Round1(d, a, b, c, x[9], 12, 0x8b44f7af);
|
|
c = md5Round1(c, d, a, b, x[10], 17, 0xffff5bb1);
|
|
b = md5Round1(b, c, d, a, x[11], 22, 0x895cd7be);
|
|
a = md5Round1(a, b, c, d, x[12], 7, 0x6b901122);
|
|
d = md5Round1(d, a, b, c, x[13], 12, 0xfd987193);
|
|
c = md5Round1(c, d, a, b, x[14], 17, 0xa679438e);
|
|
b = md5Round1(b, c, d, a, x[15], 22, 0x49b40821);
|
|
|
|
// round 2
|
|
a = md5Round2(a, b, c, d, x[1], 5, 0xf61e2562);
|
|
d = md5Round2(d, a, b, c, x[6], 9, 0xc040b340);
|
|
c = md5Round2(c, d, a, b, x[11], 14, 0x265e5a51);
|
|
b = md5Round2(b, c, d, a, x[0], 20, 0xe9b6c7aa);
|
|
a = md5Round2(a, b, c, d, x[5], 5, 0xd62f105d);
|
|
d = md5Round2(d, a, b, c, x[10], 9, 0x02441453);
|
|
c = md5Round2(c, d, a, b, x[15], 14, 0xd8a1e681);
|
|
b = md5Round2(b, c, d, a, x[4], 20, 0xe7d3fbc8);
|
|
a = md5Round2(a, b, c, d, x[9], 5, 0x21e1cde6);
|
|
d = md5Round2(d, a, b, c, x[14], 9, 0xc33707d6);
|
|
c = md5Round2(c, d, a, b, x[3], 14, 0xf4d50d87);
|
|
b = md5Round2(b, c, d, a, x[8], 20, 0x455a14ed);
|
|
a = md5Round2(a, b, c, d, x[13], 5, 0xa9e3e905);
|
|
d = md5Round2(d, a, b, c, x[2], 9, 0xfcefa3f8);
|
|
c = md5Round2(c, d, a, b, x[7], 14, 0x676f02d9);
|
|
b = md5Round2(b, c, d, a, x[12], 20, 0x8d2a4c8a);
|
|
|
|
// round 3
|
|
a = md5Round3(a, b, c, d, x[5], 4, 0xfffa3942);
|
|
d = md5Round3(d, a, b, c, x[8], 11, 0x8771f681);
|
|
c = md5Round3(c, d, a, b, x[11], 16, 0x6d9d6122);
|
|
b = md5Round3(b, c, d, a, x[14], 23, 0xfde5380c);
|
|
a = md5Round3(a, b, c, d, x[1], 4, 0xa4beea44);
|
|
d = md5Round3(d, a, b, c, x[4], 11, 0x4bdecfa9);
|
|
c = md5Round3(c, d, a, b, x[7], 16, 0xf6bb4b60);
|
|
b = md5Round3(b, c, d, a, x[10], 23, 0xbebfbc70);
|
|
a = md5Round3(a, b, c, d, x[13], 4, 0x289b7ec6);
|
|
d = md5Round3(d, a, b, c, x[0], 11, 0xeaa127fa);
|
|
c = md5Round3(c, d, a, b, x[3], 16, 0xd4ef3085);
|
|
b = md5Round3(b, c, d, a, x[6], 23, 0x04881d05);
|
|
a = md5Round3(a, b, c, d, x[9], 4, 0xd9d4d039);
|
|
d = md5Round3(d, a, b, c, x[12], 11, 0xe6db99e5);
|
|
c = md5Round3(c, d, a, b, x[15], 16, 0x1fa27cf8);
|
|
b = md5Round3(b, c, d, a, x[2], 23, 0xc4ac5665);
|
|
|
|
// round 4
|
|
a = md5Round4(a, b, c, d, x[0], 6, 0xf4292244);
|
|
d = md5Round4(d, a, b, c, x[7], 10, 0x432aff97);
|
|
c = md5Round4(c, d, a, b, x[14], 15, 0xab9423a7);
|
|
b = md5Round4(b, c, d, a, x[5], 21, 0xfc93a039);
|
|
a = md5Round4(a, b, c, d, x[12], 6, 0x655b59c3);
|
|
d = md5Round4(d, a, b, c, x[3], 10, 0x8f0ccc92);
|
|
c = md5Round4(c, d, a, b, x[10], 15, 0xffeff47d);
|
|
b = md5Round4(b, c, d, a, x[1], 21, 0x85845dd1);
|
|
a = md5Round4(a, b, c, d, x[8], 6, 0x6fa87e4f);
|
|
d = md5Round4(d, a, b, c, x[15], 10, 0xfe2ce6e0);
|
|
c = md5Round4(c, d, a, b, x[6], 15, 0xa3014314);
|
|
b = md5Round4(b, c, d, a, x[13], 21, 0x4e0811a1);
|
|
a = md5Round4(a, b, c, d, x[4], 6, 0xf7537e82);
|
|
d = md5Round4(d, a, b, c, x[11], 10, 0xbd3af235);
|
|
c = md5Round4(c, d, a, b, x[2], 15, 0x2ad7d2bb);
|
|
b = md5Round4(b, c, d, a, x[9], 21, 0xeb86d391);
|
|
|
|
// increment a, b, c, d
|
|
state->a += a;
|
|
state->b += b;
|
|
state->c += c;
|
|
state->d += d;
|
|
|
|
state->bufLen = 0;
|
|
}
|
|
|
|
void md5Append(MD5State *state, Guchar *data, int dataLen) {
|
|
Guchar *p;
|
|
int remain, k;
|
|
|
|
p = data;
|
|
remain = dataLen;
|
|
while (state->bufLen + remain >= 64) {
|
|
k = 64 - state->bufLen;
|
|
memcpy(state->buf + state->bufLen, p, k);
|
|
state->bufLen = 64;
|
|
md5ProcessBlock(state);
|
|
p += k;
|
|
remain -= k;
|
|
}
|
|
if (remain > 0) {
|
|
memcpy(state->buf + state->bufLen, p, remain);
|
|
state->bufLen += remain;
|
|
}
|
|
state->msgLen += dataLen;
|
|
}
|
|
|
|
void md5Finish(MD5State *state) {
|
|
// padding and length
|
|
state->buf[state->bufLen++] = 0x80;
|
|
if (state->bufLen > 56) {
|
|
while (state->bufLen < 64) {
|
|
state->buf[state->bufLen++] = 0x00;
|
|
}
|
|
md5ProcessBlock(state);
|
|
}
|
|
while (state->bufLen < 56) {
|
|
state->buf[state->bufLen++] = 0x00;
|
|
}
|
|
state->buf[56] = (Guchar)(state->msgLen << 3);
|
|
state->buf[57] = (Guchar)(state->msgLen >> 5);
|
|
state->buf[58] = (Guchar)(state->msgLen >> 13);
|
|
state->buf[59] = (Guchar)(state->msgLen >> 21);
|
|
state->buf[60] = (Guchar)(state->msgLen >> 29);
|
|
state->buf[61] = (Guchar)0;
|
|
state->buf[62] = (Guchar)0;
|
|
state->buf[63] = (Guchar)0;
|
|
state->bufLen = 64;
|
|
md5ProcessBlock(state);
|
|
|
|
// break digest into bytes
|
|
state->digest[0] = (Guchar)state->a;
|
|
state->digest[1] = (Guchar)(state->a >> 8);
|
|
state->digest[2] = (Guchar)(state->a >> 16);
|
|
state->digest[3] = (Guchar)(state->a >> 24);
|
|
state->digest[4] = (Guchar)state->b;
|
|
state->digest[5] = (Guchar)(state->b >> 8);
|
|
state->digest[6] = (Guchar)(state->b >> 16);
|
|
state->digest[7] = (Guchar)(state->b >> 24);
|
|
state->digest[8] = (Guchar)state->c;
|
|
state->digest[9] = (Guchar)(state->c >> 8);
|
|
state->digest[10] = (Guchar)(state->c >> 16);
|
|
state->digest[11] = (Guchar)(state->c >> 24);
|
|
state->digest[12] = (Guchar)state->d;
|
|
state->digest[13] = (Guchar)(state->d >> 8);
|
|
state->digest[14] = (Guchar)(state->d >> 16);
|
|
state->digest[15] = (Guchar)(state->d >> 24);
|
|
}
|
|
|
|
void md5(Guchar *msg, int msgLen, Guchar *digest) {
|
|
MD5State state;
|
|
int i;
|
|
|
|
if (msgLen < 0) {
|
|
return;
|
|
}
|
|
md5Start(&state);
|
|
md5Append(&state, msg, msgLen);
|
|
md5Finish(&state);
|
|
for (i = 0; i < 16; ++i) {
|
|
digest[i] = state.digest[i];
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------
|
|
// SHA-256 hash
|
|
//------------------------------------------------------------------------
|
|
|
|
static Guint sha256K[64] = {
|
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
|
|
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
|
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
|
|
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
|
|
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
|
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
|
|
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
|
|
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
|
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
|
|
};
|
|
|
|
static inline Guint rotr(Guint x, Guint n) {
|
|
return (x >> n) | (x << (32 - n));
|
|
}
|
|
|
|
static inline Guint sha256Ch(Guint x, Guint y, Guint z) {
|
|
return (x & y) ^ (~x & z);
|
|
}
|
|
|
|
static inline Guint sha256Maj(Guint x, Guint y, Guint z) {
|
|
return (x & y) ^ (x & z) ^ (y & z);
|
|
}
|
|
|
|
static inline Guint sha256Sigma0(Guint x) {
|
|
return rotr(x, 2) ^ rotr(x, 13) ^ rotr(x, 22);
|
|
}
|
|
|
|
static inline Guint sha256Sigma1(Guint x) {
|
|
return rotr(x, 6) ^ rotr(x, 11) ^ rotr(x, 25);
|
|
}
|
|
|
|
static inline Guint sha256sigma0(Guint x) {
|
|
return rotr(x, 7) ^ rotr(x, 18) ^ (x >> 3);
|
|
}
|
|
|
|
static inline Guint sha256sigma1(Guint x) {
|
|
return rotr(x, 17) ^ rotr(x, 19) ^ (x >> 10);
|
|
}
|
|
|
|
static void sha256HashBlock(Guchar *blk, Guint *H) {
|
|
Guint W[64];
|
|
Guint a, b, c, d, e, f, g, h;
|
|
Guint T1, T2;
|
|
Guint t;
|
|
|
|
// 1. prepare the message schedule
|
|
for (t = 0; t < 16; ++t) {
|
|
W[t] = (blk[t*4] << 24) |
|
|
(blk[t*4 + 1] << 16) |
|
|
(blk[t*4 + 2] << 8) |
|
|
blk[t*4 + 3];
|
|
}
|
|
for (t = 16; t < 64; ++t) {
|
|
W[t] = sha256sigma1(W[t-2]) + W[t-7] + sha256sigma0(W[t-15]) + W[t-16];
|
|
}
|
|
|
|
// 2. initialize the eight working variables
|
|
a = H[0];
|
|
b = H[1];
|
|
c = H[2];
|
|
d = H[3];
|
|
e = H[4];
|
|
f = H[5];
|
|
g = H[6];
|
|
h = H[7];
|
|
|
|
// 3.
|
|
for (t = 0; t < 64; ++t) {
|
|
T1 = h + sha256Sigma1(e) + sha256Ch(e,f,g) + sha256K[t] + W[t];
|
|
T2 = sha256Sigma0(a) + sha256Maj(a,b,c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
}
|
|
|
|
// 4. compute the intermediate hash value
|
|
H[0] += a;
|
|
H[1] += b;
|
|
H[2] += c;
|
|
H[3] += d;
|
|
H[4] += e;
|
|
H[5] += f;
|
|
H[6] += g;
|
|
H[7] += h;
|
|
}
|
|
|
|
static void sha256(Guchar *msg, int msgLen, Guchar *hash) {
|
|
Guchar blk[64];
|
|
Guint H[8];
|
|
int blkLen, i;
|
|
|
|
H[0] = 0x6a09e667;
|
|
H[1] = 0xbb67ae85;
|
|
H[2] = 0x3c6ef372;
|
|
H[3] = 0xa54ff53a;
|
|
H[4] = 0x510e527f;
|
|
H[5] = 0x9b05688c;
|
|
H[6] = 0x1f83d9ab;
|
|
H[7] = 0x5be0cd19;
|
|
|
|
blkLen = 0;
|
|
for (i = 0; i + 64 <= msgLen; i += 64) {
|
|
sha256HashBlock(msg + i, H);
|
|
}
|
|
blkLen = msgLen - i;
|
|
if (blkLen > 0) {
|
|
memcpy(blk, msg + i, blkLen);
|
|
}
|
|
|
|
// pad the message
|
|
blk[blkLen++] = 0x80;
|
|
if (blkLen > 56) {
|
|
while (blkLen < 64) {
|
|
blk[blkLen++] = 0;
|
|
}
|
|
sha256HashBlock(blk, H);
|
|
blkLen = 0;
|
|
}
|
|
while (blkLen < 56) {
|
|
blk[blkLen++] = 0;
|
|
}
|
|
blk[56] = 0;
|
|
blk[57] = 0;
|
|
blk[58] = 0;
|
|
blk[59] = 0;
|
|
blk[60] = (Guchar)(msgLen >> 21);
|
|
blk[61] = (Guchar)(msgLen >> 13);
|
|
blk[62] = (Guchar)(msgLen >> 5);
|
|
blk[63] = (Guchar)(msgLen << 3);
|
|
sha256HashBlock(blk, H);
|
|
|
|
// copy the output into the buffer (convert words to bytes)
|
|
for (i = 0; i < 8; ++i) {
|
|
hash[i*4] = (Guchar)(H[i] >> 24);
|
|
hash[i*4 + 1] = (Guchar)(H[i] >> 16);
|
|
hash[i*4 + 2] = (Guchar)(H[i] >> 8);
|
|
hash[i*4 + 3] = (Guchar)H[i];
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------
|
|
// SHA-384 and SHA-512 hashes
|
|
//------------------------------------------------------------------------
|
|
|
|
typedef unsigned long long SHA512Uint64;
|
|
|
|
static SHA512Uint64 sha512K[80] = {
|
|
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
|
|
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
|
|
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
|
|
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
|
|
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
|
|
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
|
|
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
|
|
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
|
|
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
|
|
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
|
|
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
|
|
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
|
|
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
|
|
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
|
|
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
|
|
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
|
|
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
|
|
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
|
|
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
|
|
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
|
|
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
|
|
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
|
|
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
|
|
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
|
|
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
|
|
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
|
|
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
|
|
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
|
|
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
|
|
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
|
|
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
|
|
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
|
|
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
|
|
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
|
|
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
|
|
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
|
|
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
|
|
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
|
|
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
|
|
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
|
|
};
|
|
|
|
static inline SHA512Uint64 rotr64(SHA512Uint64 x, Guint n) {
|
|
return (x >> n) | (x << (64 - n));
|
|
}
|
|
|
|
static inline SHA512Uint64 sha512Ch(SHA512Uint64 x, SHA512Uint64 y,
|
|
SHA512Uint64 z) {
|
|
return (x & y) ^ (~x & z);
|
|
}
|
|
|
|
static inline SHA512Uint64 sha512Maj(SHA512Uint64 x, SHA512Uint64 y,
|
|
SHA512Uint64 z) {
|
|
return (x & y) ^ (x & z) ^ (y & z);
|
|
}
|
|
|
|
static inline SHA512Uint64 sha512Sigma0(SHA512Uint64 x) {
|
|
return rotr64(x, 28) ^ rotr64(x, 34) ^ rotr64(x, 39);
|
|
}
|
|
|
|
static inline SHA512Uint64 sha512Sigma1(SHA512Uint64 x) {
|
|
return rotr64(x, 14) ^ rotr64(x, 18) ^ rotr64(x, 41);
|
|
}
|
|
|
|
static inline SHA512Uint64 sha512sigma0(SHA512Uint64 x) {
|
|
return rotr64(x, 1) ^ rotr64(x, 8) ^ (x >> 7);
|
|
}
|
|
|
|
static inline SHA512Uint64 sha512sigma1(SHA512Uint64 x) {
|
|
return rotr64(x, 19) ^ rotr64(x, 61) ^ (x >> 6);
|
|
}
|
|
|
|
static void sha512HashBlock(Guchar *blk, SHA512Uint64 *H) {
|
|
SHA512Uint64 W[80];
|
|
SHA512Uint64 a, b, c, d, e, f, g, h;
|
|
SHA512Uint64 T1, T2;
|
|
Guint t;
|
|
|
|
// 1. prepare the message schedule
|
|
for (t = 0; t < 16; ++t) {
|
|
W[t] = ((SHA512Uint64)blk[t*8] << 56) |
|
|
((SHA512Uint64)blk[t*8 + 1] << 48) |
|
|
((SHA512Uint64)blk[t*8 + 2] << 40) |
|
|
((SHA512Uint64)blk[t*8 + 3] << 32) |
|
|
((SHA512Uint64)blk[t*8 + 4] << 24) |
|
|
((SHA512Uint64)blk[t*8 + 5] << 16) |
|
|
((SHA512Uint64)blk[t*8 + 6] << 8) |
|
|
(SHA512Uint64)blk[t*8 + 7];
|
|
}
|
|
for (t = 16; t < 80; ++t) {
|
|
W[t] = sha512sigma1(W[t-2]) + W[t-7] + sha512sigma0(W[t-15]) + W[t-16];
|
|
}
|
|
|
|
// 2. initialize the eight working variables
|
|
a = H[0];
|
|
b = H[1];
|
|
c = H[2];
|
|
d = H[3];
|
|
e = H[4];
|
|
f = H[5];
|
|
g = H[6];
|
|
h = H[7];
|
|
|
|
// 3.
|
|
for (t = 0; t < 80; ++t) {
|
|
T1 = h + sha512Sigma1(e) + sha512Ch(e,f,g) + sha512K[t] + W[t];
|
|
T2 = sha512Sigma0(a) + sha512Maj(a,b,c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
}
|
|
|
|
// 4. compute the intermediate hash value
|
|
H[0] += a;
|
|
H[1] += b;
|
|
H[2] += c;
|
|
H[3] += d;
|
|
H[4] += e;
|
|
H[5] += f;
|
|
H[6] += g;
|
|
H[7] += h;
|
|
}
|
|
|
|
static void sha512(Guchar *msg, int msgLen, Guchar *hash) {
|
|
Guchar blk[128];
|
|
SHA512Uint64 H[8];
|
|
int blkLen, i;
|
|
|
|
H[0] = 0x6a09e667f3bcc908LL;
|
|
H[1] = 0xbb67ae8584caa73bLL;
|
|
H[2] = 0x3c6ef372fe94f82bLL;
|
|
H[3] = 0xa54ff53a5f1d36f1LL;
|
|
H[4] = 0x510e527fade682d1LL;
|
|
H[5] = 0x9b05688c2b3e6c1fLL;
|
|
H[6] = 0x1f83d9abfb41bd6bLL;
|
|
H[7] = 0x5be0cd19137e2179LL;
|
|
|
|
blkLen = 0;
|
|
for (i = 0; i + 128 <= msgLen; i += 128) {
|
|
sha512HashBlock(msg + i, H);
|
|
}
|
|
blkLen = msgLen - i;
|
|
if (blkLen > 0) {
|
|
memcpy(blk, msg + i, blkLen);
|
|
}
|
|
|
|
// pad the message
|
|
blk[blkLen++] = 0x80;
|
|
if (blkLen > 112) {
|
|
while (blkLen < 128) {
|
|
blk[blkLen++] = 0;
|
|
}
|
|
sha512HashBlock(blk, H);
|
|
blkLen = 0;
|
|
}
|
|
while (blkLen < 112) {
|
|
blk[blkLen++] = 0;
|
|
}
|
|
blk[112] = 0;
|
|
blk[113] = 0;
|
|
blk[114] = 0;
|
|
blk[115] = 0;
|
|
blk[116] = 0;
|
|
blk[117] = 0;
|
|
blk[118] = 0;
|
|
blk[119] = 0;
|
|
blk[120] = 0;
|
|
blk[121] = 0;
|
|
blk[122] = 0;
|
|
blk[123] = 0;
|
|
blk[124] = (Guchar)(msgLen >> 21);
|
|
blk[125] = (Guchar)(msgLen >> 13);
|
|
blk[126] = (Guchar)(msgLen >> 5);
|
|
blk[127] = (Guchar)(msgLen << 3);
|
|
sha512HashBlock(blk, H);
|
|
|
|
// copy the output into the buffer (convert words to bytes)
|
|
for (i = 0; i < 8; ++i) {
|
|
hash[i*8] = (Guchar)(H[i] >> 56);
|
|
hash[i*8 + 1] = (Guchar)(H[i] >> 48);
|
|
hash[i*8 + 2] = (Guchar)(H[i] >> 40);
|
|
hash[i*8 + 3] = (Guchar)(H[i] >> 32);
|
|
hash[i*8 + 4] = (Guchar)(H[i] >> 24);
|
|
hash[i*8 + 5] = (Guchar)(H[i] >> 16);
|
|
hash[i*8 + 6] = (Guchar)(H[i] >> 8);
|
|
hash[i*8 + 7] = (Guchar)H[i];
|
|
}
|
|
}
|
|
|
|
static void sha384(Guchar *msg, int msgLen, Guchar *hash) {
|
|
Guchar blk[128];
|
|
SHA512Uint64 H[8];
|
|
int blkLen, i;
|
|
|
|
H[0] = 0xcbbb9d5dc1059ed8LL;
|
|
H[1] = 0x629a292a367cd507LL;
|
|
H[2] = 0x9159015a3070dd17LL;
|
|
H[3] = 0x152fecd8f70e5939LL;
|
|
H[4] = 0x67332667ffc00b31LL;
|
|
H[5] = 0x8eb44a8768581511LL;
|
|
H[6] = 0xdb0c2e0d64f98fa7LL;
|
|
H[7] = 0x47b5481dbefa4fa4LL;
|
|
|
|
blkLen = 0;
|
|
for (i = 0; i + 128 <= msgLen; i += 128) {
|
|
sha512HashBlock(msg + i, H);
|
|
}
|
|
blkLen = msgLen - i;
|
|
if (blkLen > 0) {
|
|
memcpy(blk, msg + i, blkLen);
|
|
}
|
|
|
|
// pad the message
|
|
blk[blkLen++] = 0x80;
|
|
if (blkLen > 112) {
|
|
while (blkLen < 128) {
|
|
blk[blkLen++] = 0;
|
|
}
|
|
sha512HashBlock(blk, H);
|
|
blkLen = 0;
|
|
}
|
|
while (blkLen < 112) {
|
|
blk[blkLen++] = 0;
|
|
}
|
|
blk[112] = 0;
|
|
blk[113] = 0;
|
|
blk[114] = 0;
|
|
blk[115] = 0;
|
|
blk[116] = 0;
|
|
blk[117] = 0;
|
|
blk[118] = 0;
|
|
blk[119] = 0;
|
|
blk[120] = 0;
|
|
blk[121] = 0;
|
|
blk[122] = 0;
|
|
blk[123] = 0;
|
|
blk[124] = (Guchar)(msgLen >> 21);
|
|
blk[125] = (Guchar)(msgLen >> 13);
|
|
blk[126] = (Guchar)(msgLen >> 5);
|
|
blk[127] = (Guchar)(msgLen << 3);
|
|
sha512HashBlock(blk, H);
|
|
|
|
// copy the output into the buffer (convert words to bytes)
|
|
for (i = 0; i < 6; ++i) {
|
|
hash[i*8] = (Guchar)(H[i] >> 56);
|
|
hash[i*8 + 1] = (Guchar)(H[i] >> 48);
|
|
hash[i*8 + 2] = (Guchar)(H[i] >> 40);
|
|
hash[i*8 + 3] = (Guchar)(H[i] >> 32);
|
|
hash[i*8 + 4] = (Guchar)(H[i] >> 24);
|
|
hash[i*8 + 5] = (Guchar)(H[i] >> 16);
|
|
hash[i*8 + 6] = (Guchar)(H[i] >> 8);
|
|
hash[i*8 + 7] = (Guchar)H[i];
|
|
}
|
|
}
|